Condensin-mediated chromosome organization and gene regulation
نویسندگان
چکیده
In many organisms sexual fate is determined by a chromosome-based method which entails a difference in sex chromosome-linked gene dosage. Consequently, a gene regulatory mechanism called dosage compensation equalizes X-linked gene expression between the sexes. Dosage compensation initiates as cells transition from pluripotency to differentiation. In Caenorhabditis elegans, dosage compensation is achieved by the dosage compensation complex (DCC) binding to both X chromosomes in hermaphrodites to downregulate gene expression by twofold. The DCC contains a subcomplex (condensin I(DC)) similar to the evolutionarily conserved condensin complexes which play a fundamental role in chromosome dynamics during mitosis. Therefore, mechanisms related to mitotic chromosome condensation are hypothesized to mediate dosage compensation. Consistent with this hypothesis, monomethylation of histone H4 lysine 20 is increased, whereas acetylation of histone H4 lysine 16 is decreased, both on mitotic chromosomes and on interphase dosage compensated X chromosomes in worms. These observations suggest that interphase dosage compensated X chromosomes maintain some characteristics associated with condensed mitotic chromosome. This chromosome state is stably propagated from one cell generation to the next. In this review we will speculate on how the biochemical activities of condensin can achieve both mitotic chromosome compaction and gene repression.
منابع مشابه
SCFSlimb ubiquitin ligase suppresses condensin II–mediated nuclear reorganization by degrading Cap-H2
Condensin complexes play vital roles in chromosome condensation during mitosis and meiosis. Condensin II uniquely localizes to chromatin throughout the cell cycle and, in addition to its mitotic duties, modulates chromosome organization and gene expression during interphase. Mitotic condensin activity is regulated by phosphorylation, but mechanisms that regulate condensin II during interphase a...
متن کاملInvolvement of condensin-directed gene associations in the organization and regulation of chromosome territories during the cell cycle
Chromosomes are not randomly disposed in the nucleus but instead occupy discrete sub-nuclear domains, referred to as chromosome territories. The molecular mechanisms that underlie the formation of chromosome territories and how they are regulated during the cell cycle remain largely unknown. Here, we have developed two different chromosome-painting approaches to address how chromosome territori...
متن کاملRibosomal RNA gene transcription mediated by the master genome regulator protein CCCTC-binding factor (CTCF) is negatively regulated by the condensin complex.
CCCTC-binding factor (CTCF) is a ubiquitously expressed "master weaver" and plays multiple functions in the genome, including transcriptional activation/repression, chromatin insulation, imprinting, X chromosome inactivation, and high-order chromatin organization. It has been shown that CTCF facilitates the recruitment of the upstream binding factor onto ribosomal DNA (rDNA) and regulates the l...
متن کاملMaintenance of Interphase Chromosome Compaction and Homolog Pairing in Drosophila Is Regulated by the Condensin Cap-H2 and Its Partner Mrg15
Dynamic regulation of chromosome structure and organization is critical for fundamental cellular processes such as gene expression and chromosome segregation. Condensins are conserved chromosome-associated proteins that regulate a variety of chromosome dynamics, including axial shortening, lateral compaction, and homolog pairing. However, how the in vivo activities of condensins are regulated a...
متن کاملCondensin II Regulates Interphase Chromatin Organization Through the Mrg-Binding Motif of Cap-H2
The spatial organization of the genome within the eukaryotic nucleus is a dynamic process that plays a central role in cellular processes such as gene expression, DNA replication, and chromosome segregation. Condensins are conserved multi-subunit protein complexes that contribute to chromosome organization by regulating chromosome compaction and homolog pairing. Previous work in our laboratory ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2014